.: Tony McGoldrick's 1/48th RAAF F/A-18 Hornet

Brand:
Hobby Boss
Scale:
1/48th
Modelling Time:
~1 year
PE/Resin Detail:
none
Comments:
"Great Kit!"
From Wikipedia, the free encyclopedia
Jump to: navigation, search
F/A-18 Hornet
Role Multirole fighter
National origin United States
Manufacturer McDonnell Douglas / Boeing
Northrop
First flight 18 November 1978
Introduction 7 January 1983
Status In service
Primary users United States Navy
United States Marine Corps
Royal Australian Air Force
See Operators below for others
Number built F/A-18A/B/C/D: 1,480[1]
Unit cost US$29–57 million (2006)[2]
Developed from Northrop YF-17
Variants McDonnell Douglas CF-18 Hornet
High Alpha Research Vehicle
Developed into Boeing F/A-18E/F Super Hornet
Boeing X-53 Active Aeroelastic Wing

The McDonnell Douglas (now Boeing) F/A-18 Hornet is a twin-engine supersonic, all-weather carrier-capable multirole fighter jet, designed to dogfight and attack ground targets (F/A for Fighter/Attack). Designed by McDonnell Douglas and Northrop, the F/A-18 was derived from the latter's YF-17 in the 1970s for use by the United States Navy and Marine Corps. The Hornet is also used by the air forces of several other nations. It has been the aerial demonstration aircraft for the U.S. Navy's Flight Demonstration Squadron, the Blue Angels, since 1986.

The F/A-18 has a top speed of Mach 1.8. It can carry a wide variety of bombs and missiles, including air-to-air and air-to-ground, supplemented by the 20 mm M61 Vulcan cannon. It is powered by two General Electric F404 turbofan engines, which give the aircraft a high thrust-to-weight ratio. The F/A-18 has excellent aerodynamic characteristics, primarily attributed to its leading edge extensions (LEX). The fighter's primary missions are fighter escort, fleet air defense, Suppression of Enemy Air Defenses (SEAD), air interdiction, close air support and aerial reconnaissance. Its versatility and reliability have proven it to be a valuable carrier asset, though it has been criticized for its lack of range and payload compared to its earlier contemporaries, such as the Grumman F-14 Tomcat in the fighter and strike fighter role, and the Grumman A-6 Intruder and LTV A-7 Corsair II in the attack role.

The F/A-18 Hornet provided the baseline design for the Boeing F/A-18E/F Super Hornet, a larger, evolutionary redesign of the F/A-18. Compared to the Hornet, the Super Hornet is larger, heavier and has improved range and payload. The F/A-18E/F was originally proposed as an alternative to an all-new aircraft to replace existing dedicated attack aircraft such as the A-6. The larger variant was also directed to replace the aging F-14 Tomcat, thus serving a complementary role with Hornets in the U.S. Navy, and serving a wider range of roles including refueling tanker. The Boeing EA-18G Growler electronic jamming platform was also developed from the F/A-18E/F Super Hornet.

Design

Jet fighter aircraft is seen against blue sky executing a pull-up, making it nearly vertical with contrail formed aft of the canopy.
A Hornet performing a high-g pull-up during an air show. The high angle of attack causes powerful vortices to form at the leading edge extensions.

The F/A-18 is a twin engine, mid-wing, multi-mission tactical aircraft. It is highly maneuverable, owing to its good thrust to weight ratio, digital fly-by-wire control system, and leading edge extensions (LEX). The LEX allow the Hornet to remain controllable at high angles of attack. The wing is a trapezoidal shape with 20-degree sweepback on the leading edge and a straight trailing edge. The wing has full-span leading edge flaps and the trailing edge has single-slotted flaps and ailerons over the entire span.[14]

Canted vertical stabilizers are another distinguishing design element, one among several other such elements that enable the Hornet's excellent high angle-of-attack ability include oversized horizontal stabilators, oversized trailing edge flaps that operate as flaperons, large full-length leading edge slats, and flight control computer programming that multiplies the movement of each control surface at low speeds and moves the vertical rudders inboard instead of simply left and right. The Hornet's normally high angle-of-attack performance envelope was put to rigorous testing and enhanced in the NASA F-18 High Alpha Research Vehicle (HARV). NASA used the F-18 HARV to demonstrate flight handling characteristics at high angle-of-attack (alpha) of 65–70 degrees using thrust vectoring vanes.[15] F/A-18 stabilators were also used as canards on NASA's F-15S/MTD.

The Hornet was among the first aircraft to heavily use multi-function displays, which at the switch of a button allow a pilot to perform either fighter or attack roles or both. This "force multiplier" ability gives the operational commander more flexibility to employ tactical aircraft in a fast-changing battle scenario. It was the first Navy aircraft to incorporate a digital multiplex avionics bus, enabling easy upgrades.[8]

The Hornet is also notable for having been designed to reduce maintenance, and as a result has required far less downtime than its heavier counterparts, the F-14 Tomcat and the A-6 Intruder. Its mean time between failure is three times greater than any other Navy strike aircraft, and requires half the maintenance time.[8] Its General Electric F404 engines were also innovative in that they were designed with operability, reliability and maintainability first. The engine, while unexceptional in rated performance, demonstrates exceptional robustness under various conditions and is resistant to stall and flameout.[16] The F404 engine connects to the airframe at only 10 points and can be replaced without special equipment; a four person team can remove the engine within 20 minutes.[17]

Exhaust nozzles of an RAAF F/A-18 at the Whenuapai Air Show in New Zealand in March 2009

The engine air inlets of the Hornet, like that of the F-16, are of a simpler "fixed" design, while those of the F-4, F-14, and F-15 have variable geometry or variable ramp air inlets. This is a speed limiting factor in the Hornet design. Instead, the Hornet uses bleed air vents on the inboard surface of the engine air intake ducts to slow and reduce the amount of air reaching the engine. While not as effective as variable geometry, the bleed air technique functions well enough to achieve near Mach 2 speeds, which is within the designed mission requirements.[18]

A 1989 USMC study found that single seat fighters were well suited to air to air combat missions while dual seat fighters were favored for complex strike missions against heavy air and ground defenses in adverse weather. The question being not so much as to whether a second pair of eyes would be useful, but as to having the second crewman sit in the same fighter or in a second fighter. Single-seat fighters that lacked wingmen were shown to be especially vulnerable.[19]

Operational history

United States

Entry into service

McDonnell Douglas rolled out the first F/A-18A on 13 September 1978,[11] in blue-on-white colors marked with "Navy" on the left and "Marines" on the right. Its first flight was on 18 November.[11] In a break with tradition, the Navy pioneered the "principal site concept"[5] with the F/A-18, where almost all testing was done at Naval Air Station Patuxent River,[8] instead of near the site of manufacture, and using Navy and Marine Corps test pilots instead of civilians early in development. In March 1979, Lt. Cdr. John Padgett became the first Navy pilot to fly the F/A-18.[20]

Following trials and operational testing by VX-4 and VX-5, Hornets began to fill the Fleet Replacement Squadrons (FRS) VFA-125, VFA-106, and VMFAT-101, where pilots are introduced to the F/A-18. The Hornet entered operational service with Marine Corps squadron VMFA-314 at MCAS El Toro on 7 January 1983,[11] and with Navy squadron VFA-113 in March 1983, replacing F-4s and A-7Es, respectively.[8]

The initial fleet reports were complimentary, indicating that the Hornet was extraordinarily reliable, a major change from its predecessor, the F-4J.[21] Other squadrons that switched to F/A-18 are VFA-146 "Blue diamonds", and VFA-147 "Argonauts". In January 1985, the VFA-131 "Wildcats" and the VFA-132 "Privateers" moved from Naval Air Station Lemoore, California to Naval Air Station Cecil Field, Florida, and became the Atlantic Fleet's first F/A-18 squadrons.

The US Navy's Blue Angels Flight Demonstration Squadron switched to the F/A-18 Hornet in 1986,[11] when it replaced the A-4 Skyhawk. The Blue Angels perform in F/A-18A and B models at air shows and other special events across the US and worldwide. Blue Angels pilots must have 1,350 hours and an aircraft carrier certification. The two-seat B model is typically used to give rides to VIPs, but can also fill in for other aircraft in the squadron in a normal show, if the need arises.

Combat operations

The F/A-18 first saw combat action in April 1986, when VFA-131 Hornets from USS Coral Sea flew SEAD missions against Libyan air defenses during Operation Prairie Fire and an attack on Benghazi as part of Operation El Dorado Canyon.[22]

During the Gulf War of 1991, the Navy deployed 106 F/A-18A/C Hornets and Marine Corps deployed 84 F/A-18A/C/D Hornets.[23] Two U.S. Navy F/A-18s were destroyed and their pilots lost: on 17 January 1991, the first day of the war, Lieutenant Commander Scott Speicher of VFA-81 was shot down and killed in the crash of his aircraft.[24] The other F/A-18, piloted by Lieutenant Robert Dwyer (who was officially listed as killed in action, body not recovered), was lost over the North Persian Gulf after a successful mission to Iraq.

F/A-18 pilots were credited with two kills during the Gulf War, both MiG-21s.[25] On 17 January, the first day of the war, U.S. Navy pilots Lieutenant Commander Mark I. Fox and his wingman, Lieutenant Nick Mongilio were sent from the USS Saratoga in the Red Sea to bomb an airfield in southwestern Iraq. While en route, they were warned by an E-2C of approaching MiG-21 aircraft. The Hornets shot down the two MiGs with AIM-7 and AIM-9 missiles in a brief dogfight. The F/A-18s, each carrying four 2,000 lb (910 kg) bombs, then resumed their bombing run before returning to Saratoga.[8][11] The Hornet's survivability was demonstrated when a Hornet took hits in both engines and flew 125 mi (201 km) back to base. It was repaired and flying within a few days. F/A-18s flew 4,551 sorties with 10 Hornets damaged including two losses.[26]

As the A-6 Intruder was retired in the 1990s, its role was filled by the F/A-18. The F/A-18 demonstrated its versatility and reliability during Operation Desert Storm, shooting down enemy fighters and subsequently bombing enemy targets with the same aircraft on the same mission. It broke records for tactical aircraft in availability, reliability, and maintainability.

Both U.S. Navy F/A-18A/C models and Marine F/A-18A/C/D models were used continuously in Operation Southern Watch and over Bosnia and Kosovo in the 1990s. U.S. Navy Hornets flew during Operation Enduring Freedom in 2001 from carriers operating in the North Arabian Sea. Both the F/A-18A/C and newer F/A-18E/F variants were used during Operation Iraqi Freedom in 2003, operating from aircraft carriers as well from an air base in Kuwait. Later in the conflict USMC A+, C, and primarily D models operated from bases within Iraq.

An F/A-18C was accidentally downed in a friendly fire incident by a Patriot missile when a pilot tried to evade two missiles fired at him and crashed.[27] Two others collided over Iraq in May 2005. In January 2007, two Navy F/A-18E/F Super Hornets collided in midair and crashed in the Persian Gulf.[28]

Non-U.S. service

Though U.S. Navy aircraft have generally not sold well on the export market, the F/A-18 has been purchased and is in operation with several foreign air services. Export Hornets are typically similar to U.S. models of a similar manufacture date. Since none of the customers operate aircraft carriers, all export models have been sold without the automatic carrier landing system, and Royal Australian Air Force further removed the catapult attachment on the nose gear.[21] Except for Canada, all export customers purchased their Hornets through the U.S. Navy, via the U.S. Foreign Military Sales (FMS) Program, where the Navy acts as the purchasing manager but incurs no financial gain or loss. Canada, the largest Hornet operator outside of the U.S., ordered its aircraft directly from the manufacturer.

Australia

The Royal Australian Air Force purchased 57 F/A-18A fighters and 18 F/A-18B two-seat trainers to replace its Dassault Mirage IIIOs.[29][30] Numerous options were considered for the replacement, notably the F-15A Eagle, the F-16 Falcon, and the then new F/A-18 Hornet.[31] The F-15 was discounted because the version offered had no ground-attack capability. The F-16 was considered unsuitable largely due to having only one engine.[32] Australia selected the F/A-18 in October 1981.[30] Original differences between the Australian and US Navy's standard F/A-18 were the removed nose wheel tie bar for catapult launch (later re-fitted with a dummy version to remove nose wheel shimmy), addition of a high frequency radio, an Australian fatigue data analysis system, an improved video and voice recorder, and the use of ILS/VOR (Instrument Landing System/Very High Frequency Omnidirectional Range) instead of the carrier landing system.[32]

The first two aircraft were produced in the US, with the remainder assembled in Australia at Government Aircraft Factories. F/A-18 deliveries to the RAAF began on 29 October 1984, and continued until May 1990.[33] In 2001, Australia deployed four aircraft to Diego Garcia, in an air defense role, during coalition operations against the Taliban in Afghanistan. In 2003, 75 Squadron deployed 14 F/A-18s to Qatar as part of Operation Falconer and these aircraft saw action during the invasion of Iraq.[34] Australia had 71 Hornets in service in 2006, after four were lost to crashes.[29]

The fleet was upgraded beginning in the late 1990s to extend their service lives to 2015.[35] They were expected to be retired then and replaced by the F-35 Lightning II.[36][37] Several of the Australian Hornets have had refits applied to extend their service lives until the planned retirement date of 2020.[38] In addition to the F/A-18A and F/A-18B Hornets, Australia has purchased 24 F/A-18F Super Hornets, with deliveries beginning in 2009.

Please go to Wikipedia, if you want any further information

Thanks Wikipedia!

Click on each image for a closer look

Web site contents Copyright Eastern Suburbs Scale Modelling Club 2013, All rights reserved.