.: Harry Edmond's Bristol Bloodhound Diorama

Brand:

Airfix

Scale:

1/72

Modelling Time:
30 hrs
PE/Resin Detail:
none
Comments:
"Excellent kit, but no detail in figures' faces"

Bristol Bloodhound

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For the earlier aircraft, see Bristol Type 84 Bloodhound.
Bloodhound Mk 2
Bloodhound SAM at the RAF Museum.jpg
A Bloodhound missile at the RAF Museum, Hendon, London.
Type SAM
Place of origin United Kingdom
Service history
In service 1958 (MK 1)/1964 (MK 2) - 1991
Used by See operators
Wars -
Production history
Designed 1950s
Manufacturer Bristol Aeroplane Co.
Number built 783
Variants See variants
Specifications
Weight Overall: 2,270 kg (5,000 lb)
Length Overall: 8.46 m (27 ft 9 in)
Diameter Main body 54.6 cm (1 ft 9.5 in)
Warhead Continuous-rod warhead
Detonation
mechanism
Proximity fuse

Engine Ramjets, 4× solid fuel boosters
Wingspan Overall: 2.83 m (9 ft 3 in)
Operational
range
85 km
Speed Mach 2.7
Guidance
system
Semi-active radar homing
Steering
system
Control surfaces
Launch
platform
Fixed installation

The Bristol Bloodhound is a British surface-to-air missile developed during the 1950s as the UK's main air defence weapon, and was in large-scale service with the Royal Air Force (RAF) and the forces of four other countries. The Bloodhound Mk. I entered service in December 1958, and began to be replaced by the much more capable Mk. II starting in 1964. The last Mk. II missile squadron stood down in July 1991, although Swiss examples remained operational until 1999.

The Bloodhound Mk. II was a relatively advanced missile for its era, roughly comparable to the US's Nike Hercules in terms of range and performance, but using an advanced continuous-wave semi-active radar homing system, offering excellent performance against electronic countermeasures, and using a digital computer for fire control. It was also relatively large, which limited it to stationary defensive roles similar to the Hercules or the Soviet's S-25 Berkut, although the Swiss operated theirs in a semi-mobile form.

Bloodhound shares much in common with the English Electric Thunderbird, including some of the radar systems and guidance features. Thunderbird was smaller and much more mobile, seeing service with the British Army and several other forces. The two served in tandem for some time, until the shorter-range role of the Thunderbird was replaced by the much smaller and fast-acting BAC Rapier starting in 1971. Bloodhound's longer range kept it in service until the threat of bomber attack by the Soviet Union disappeared with their dissolution in 1991.

History

The Stage Plan

After the end of the Second World War, UK air defences were run down, on the assumption that it would be at least a decade before another war started. However, the Soviet atomic bomb test of 1949 forced a re-evaluation of that policy, and UK defence planners started studying the problems of building a more integrated air defence network than the patchwork of WWII expediencies. The Cherry Report called for a reorganisation of existing radars under the ROTOR project along with new control centres to better coordinate fighters and anti-aircraft guns. This was strictly a stop-gap measure however; over a longer term there would be a requirement for deployment of new long-range radars in place of the Chain Home systems from the war, construction of command and control sites able to survive a nuclear attack, interceptors of ever-increasing performance, and anti-aircraft missiles and guns to provide a last-ditch defence.

The missile portion was the newest and least understood technology. In order to deploy quickly and gain experience with these systems, the "Stage Plan" was developed. "Stage 1" called for missiles with a range of only 20 miles with capabilities against subsonic or low-supersonic attacking aircraft, which were assumed to be at medium or high altitudes. The Stage 1 missile would be used to protect the V bomber bases in the UK, as well as the British Army in the field.[1] The Stage 1 missile would be later replaced with a much higher-performance and longer-range "Stage 2" system in the 1960s, which would have capability against supersonic targets at longer ranges.[1]

Two entries were accepted for the original Stage 1 proposal, an already-started project from English Electric under the name "Red Shoes",[2] and Bristol's proposal under "Red Duster".[3] Bristol's efforts were fairly similar to EE's in most ways, although it was somewhat less mobile while offering somewhat better range. Ferranti would develop the radar and guidance system for both. Bristol was awarded a development contract in 1949, referring to it as Project 1220.[3]

Design

As the 1220 required long range, Bristol made the decision early on to use a ramjet for power. However, they had no experience with this engine design, and started a long series of tests to develop it. As the ramjet only operates effectively at high speeds over Mach 1, Bristol built a series of testbed airframes to flight-test the engines. The first, JTV-1, resembled a flying torpedo with the ramjets fitted to the end of the cruciform rear fins. Early problems were ironed out and the JTV series was the first British ramjet powered aircraft to operate continually at supersonic speeds.[4]

Once the JTV testing started to proceed, Bristol studied a series of airframe designs. The first was a long tube with an intake at the front, and four delta-shaped fins arranged near the front of the fuselage. The intake and wings give it some resemblance to the English Electric Lightning, albeit with a long tube sticking out of the aft end. This arrangement left little internal room for fuel or guidance. A second design was similar, but used mid-mounted fins of reverse-delta shape (flat at the front) with small intakes at their root. The performance of these intakes was not well understood, and considered risky. The final design was essentially a small aircraft, with mid-set trapezoidal wings and four small swept wing fins at the extreme rear. In this version two engines were mounted on the wing tips, similar to the JTV series mounting and better understood due to those flight tests.[4]

One unique feature of the new design was the aerodynamic control system known as "twist and steer". Typical large missile designs use control surfaces at the tail mounted in-line with symmetric wings mounted near the fuselage midpoint. The control surfaces tilt the missile relative to its direction of travel, causing the wings to become non-symmetrical relative the airflow, generating lift that turns the missile. Bristol was concerned that the angles needed to generate the required lift using this method would be too great for the engines intakes to deal with, so they adopted the system first experimented with on the war-era Brakemine project. In this system the four cropped-delta surfaces at the tail were fixed and used only for stability, not control. Directional control was provided though two large mid-mounted wings which could be rotated independently to large angles. The guidance system rotated the wings in opposite directions to roll the missile until the wings were perpendicular to the target, and then rotated them in the same direction to provide lift in the required direction. This meant that the wings could be rotated to the large angles required to generate large amounts of lift, without rotating the missile body itself. This kept airflow in the direction of the missile body, and thus the engine intakes, as well as greatly reducing the drag caused by the tilting of the fuselage across the relative wind. The long, thin fuselage offered very low rotational inertia, conferring excellent homing performance in the last few seconds. The engines were mounted above and below these wings on short extensions.[5]

In the initial designs, a single very large solid fuel booster launched the missile off its launcher and powered it to speeds where the ramjets could take over.

Please go to Wikipedia, if you want any further information

Thanks Wikipedia!

 

Click on each image for a closer look

Box art:

Web site contents Copyright Eastern Suburbs Scale Modelling Club 2014, All rights reserved.