Debut: April 2017

 




   

.: Dave Garner's F-86F Sabre

Brand:

Italeri
#2501

Scale:

1/32

Modelling Time:

4 weeks

PE/Resin Detail:

none

Comments:

"Mish-mash of decals - not a true representation of jet.
Build kit reasonable quality. "

North American F-86 Sabre

From Wikipedia, the free encyclopedia
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2012) (Learn how and when to remove this template message)
F-86 Sabre
North American F86-01.JPG
A North American F-86 during the EAA AirVenture airshow in Oshkosh, WI
Role Fighter aircraft
National origin United States
Manufacturer North American Aviation
First flight 1 October 1947
Introduction 1949, with USAF
Retired 1994, Bolivia
Primary users United States Air Force
Japan Air Self-Defense Force
Spanish Air Force
Republic of Korea Air Force
Number built 9,860[1]
Unit cost
US$219,457 (F-86E)[2]
Developed from North American FJ-1 Fury
Variants CAC Sabre
Canadair Sabre
North American F-86D Sabre
North American FJ-2/-3 Fury
Developed into North American FJ-4 Fury
North American YF-93
North American F-100 Super Sabre

The North American F-86 Sabre, sometimes called the Sabrejet, is a transonic jet fighter aircraft. Produced by North American Aviation, the Sabre is best known as the United States' first swept wing fighter that could counter the similarly-winged Soviet MiG-15 in high-speed dogfights over the skies of the Korean War (1950–1953). Considered one of the best and most important fighter aircraft in that war, the F-86 is also rated highly in comparison with fighters of other eras.[3] Although it was developed in the late 1940s and was outdated by the end of the '50s, the Sabre proved versatile and adaptable, and continued as a front-line fighter in numerous air forces until the last active operational examples were retired by the Bolivian Air Force in 1994.

Its success led to an extended production run of more than 7,800 aircraft between 1949 and 1956, in the United States, Japan and Italy. Variants were built in Canada and Australia. The Canadair Sabre added another 1,815 airframes, and the significantly redesigned CAC Sabre (sometimes known as the Avon Sabre or CAC CA-27), had a production run of 112. The Sabre was by far the most-produced Western jet fighter, with total production of all variants at 9,860 units.[1]

Development

North American Aviation had produced the propeller-powered P-51 Mustang in World War II, which saw combat against some of the first operational jet fighters. By late 1944, North American proposed its first jet fighter to the U.S. Navy, which became the FJ-1 Fury. It was an unexceptional transitional jet fighter that had a straight wing derived from the P-51.[4][5] Initial proposals to meet a United States Army Air Forces (USAAF) requirement for a medium-range, single-seat, high-altitude jet-powered day escort fighter/fighter bomber were drafted in mid-1944.[6] In early 1945, North American Aviation submitted four designs.[6] The USAAF selected one design over the others, and granted North American a contract to build three examples of the XP-86 (eXperimental Pursuit). Deleting specific requirements from the FJ-1 Fury, coupled with other modifications, allowed the XP-86 to be lighter and considerably faster than the Fury, with an estimated top speed of 582 mph (937 km/h), versus the Fury's 547 mph (880 km/h).[6] Despite the gain in speed, early studies revealed the XP-86 would have the same performance as its rivals, the XP-80 and XP-84. It was also feared that, because these designs were more advanced in their development stages, the XP-86 would be canceled.

Crucially, the XP-86 would not be able to meet the required top speed of 600 mph (970 km/h);[7] North American had to quickly come up with a radical change that could leapfrog it over its rivals. The North American F-86 Sabre was the first American aircraft to take advantage of flight research data seized from the German aerodynamicists at the end of World War II.[8] This data showed that a thin swept wing could greatly reduce drag and delay compressibility problems that had bedeviled even prop-powered fighters such as the Lockheed P-38 Lightning approaching the speed of sound. By 1944, German engineers and designers had established the benefits of swept wings based on experimental designs dating back to 1940. Study of the data showed that a swept wing would solve their speed problem, while a slat on the wing's leading edge that extended at low speeds would enhance low-speed stability.

Because development of the XP-86 had reached an advanced stage, the idea of changing the sweep of the wing was met with resistance from some senior North American staff. Despite stiff opposition, after good results were obtained in wind tunnel tests, the swept-wing concept was eventually adopted. Performance requirements were met by incorporating a 35° swept-back wing, using NACA 4-digit modified airfoils, using NACA 0009.5–64 at the root and NACA 0008.5–64 at the tip,[9] with an automatic slat design based on that of the Messerschmitt Me 262 and an electrically adjustable stabilizer, another feature of the Me 262A.[10][11][12] Many Sabres had the "6–3 wing" (a fixed-leading edge with 6 inches extended chord at the root and 3 inches extended chord at the tip) retrofitted after combat experience was gained in Korea.[10][13] This modification changed the wing airfoils to the NACA 0009-64 mod at the root and the NACA 0008.1–64 mod at the tip.[9]

Delays caused by the major redesign meant that manufacturing did not begin until after World War II. The XP-86 prototype, which would lead to the F-86 Sabre, was rolled out on 8 August 1947.[14] The maiden flight occurred on 1 October 1947 with George Welch at the controls,[15] flying from Muroc Dry Lake (now Edwards AFB), California.[8][14]

The United States Air Force's Strategic Air Command had F-86 Sabres in service from 1949 through 1950. The F-86s were assigned to the 22nd Bomb Wing, the 1st Fighter Wing and the 1st Fighter Interceptor Wing.[16] The F-86 was the primary U.S. air combat fighter during the Korean War, with significant numbers of the first three production models seeing combat.

The F-86 Sabre was also produced under license by Canadair, Ltd as the Canadair Sabre. The final variant of the Canadian Sabre, the Mark 6, is generally rated as having the highest capabilities of any Sabre version made anywhere.[17][Note 1]

Breaking sound barrier and other records

Jackie Cochran in the cockpit of the Canadair Sabre with Chuck Yeager.

The F-86A set its first official world speed record of 671 miles per hour (1,080 km/h) on September 15, 1948 at Muroc Dry Lake flown by Major Richard L. Johnson, USAF.[18]

The Air Force announced that the XF-86 had exceed Mach 1 in a dive on April 26, 1948. But shortly before his death in 1996, North American aerodynamicist Ed Horkey claimed that George "Wheaties" Welch had exceeded Mach 1 much earlier. In "Aces Wild", former NA test pilot Al Blackburn suggests dates as early as October 1, 1947.[19] Chuck Yeager broke the sound barrier on 14 October 1947 in the rocket-propelled Bell X-1 during level flight, making it the first true supersonic aircraft.[20] Five years later, on 18 May 1953, Jacqueline Cochran became the first woman to break the sound barrier, flying a "one-off" Canadian-built F-86 Sabre Mk 3, alongside Chuck Yeager.[2] Col. K. K. Compton won the 1951 Bendix air race in an F-86A with an average speed of 553.76 mph.

Design

Overview

Sabre at NASM in livery of 4th Fighter-Interceptor Wing

The F-86 was produced as both a fighter-interceptor and fighter-bomber. Several variants were introduced over its production life, with improvements and different armament implemented (see below). The XP-86 was fitted with a General Electric J35-C-3 jet engine that produced 4,000 lbf (18 kN) of thrust. This engine was built by GM's Chevrolet division until production was turned over to Allison.[21] The General Electric J47-GE-7 engine was used in the F-86A-1 producing a thrust of 5,200 lbf (23 kN) while the General Electric J73-GE-3 engine of the F-86H produced 9,250 lbf (41 kN) of thrust.[22]

The fighter-bomber version (F-86H) could carry up to 2,000 lb (907 kg) of bombs, including an external fuel-type tank that could carry napalm.[23] Unguided 2.75 in (70 mm) rockets were used on some fighters on training missions, but 5 inch (127 mm) rockets were later carried on combat operations. The F-86 could also be fitted with a pair of external jettisonable jet fuel tanks (four on the F-86F beginning in 1953) that extended the range of the aircraft. Both the interceptor and fighter-bomber versions carried six 0.50 in (12.7 mm) M3 Browning machine guns with electrically boosted feed in the nose (later versions of the F-86H carried four 20 mm (0.79 in) cannons instead of machine guns). Firing at a rate of 1,200 rounds per minute,[24] the .50 in (12.7 mm) guns were harmonized to converge at 1,000 ft (300 m) in front of the aircraft, using armor-piercing (AP) and armor-piercing incendiary (API) rounds, with one armor-piercing incendiary tracer (APIT) for every five AP or API rounds. The API rounds used during the Korean War contained magnesium, which were designed to ignite upon impact but burned poorly above 35,000 ft (11,000 m) as oxygen levels were insufficient to sustain combustion at that height. Initial planes were fitted with the Mark 18 manual-ranging computing gun sight. The last 24 F-86A-5-Nas and F-86E were equipped with the A-1CM gunsight-AN/APG-30 radar, which used radar to automatically compute a target's range, which later proved to be advantageous against MiG opponents over Korea.[citation needed]

Click on each image for a closer look

Box art:

Flying characteristics

The Sabre's swept wings and jet engine produced a flying experience that was very different from the pinnacle generation of propeller-driven fighters that were operational in the early days of jet fighter development in the 1940s and early 1950s. The transition from props to jets was not without accidents and incidents even for experienced fighter pilots. Early on in the jet age some US manufacturers instituted safety and transition programs where experienced test and production pilots would tour operational fighter squadrons to provide instruction and demonstrations designed to lower the accident rate.[25]

As well, the ongoing technical development and long production history of the F-86 resulted in some significant differences in the handling and flying characteristics between the various F-86 models. Some of the major changes to the design included the switch from an elevator/stabilizer to an all-flying tail, the discontinuation of leading edge slats in favour of a solid leading edge with increased internal fuel capacity, increased engine power and internal missile bay (F-86D). Each of these design changes impacted the handling and flying characteristics of the F-86 and not necessarily for the better. In the case of the solid leading edge and increased internal fuel capacity, the design change produced increased combat performance, but exacerbated a dangerous and often fatal handling characteristic upon takeoff if the nose was raised prematurely from the runway.[26] This 'over-rotation' danger is now a major area of instruction and concern for current F-86 pilots. The 1972 Sacramento Canadair Sabre accident resulting in 22 fatalities and 28 other casualties was a result of over-rotation on takeoff.

WANT MORE INFO? - GO TO WIKIPEDIA!

Thanks Wikipedia!

Web site contents Copyright Eastern Suburbs Scale Modelling Club 2017, All rights reserved.